含液体层的反射透射系数矩阵详细表达式
Author: Zhu Dengda
Email: zhudengda@mail.iggcas.ac.cn
[1]:
import numpy as np
np.set_printoptions(linewidth=200)
import sympy as sp
from sympy.printing.latex import latex
from IPython.display import display, Math
[2]:
# 定义基本变量
k, b1, a1, mu1, Omg1, kb1, ka1, w = sp.symbols(r'k b_1 a_1 mu_1 \Omega_1 k_{b1} k_{a1} \omega')
b2, a2, mu2, Omg2, kb2, ka2 = sp.symbols(r'b_2 a_2 mu_2 \Omega_2 k_{b2} k_{a2}')
lam1, lam2 = sp.symbols(r'\lambda_1 \lambda_2')
rho1, rho2 = sp.symbols(r'\rho_1 \rho_2')
动态解
液体-液体界面
[3]:
# left
Pl = sp.Matrix([
[-a1, -a2],
[rho1*w**2, -rho2*w**2]
])
# right
Pr = sp.Matrix([
[-a2, -a1],
[rho2*w**2, -rho1*w**2]
])
Q = sp.together(sp.expand(Pl.inv() * Pr))
TU = Q[:1, :1]
RU = Q[1:, :1]
RD = Q[:1, 1:]
TD = Q[1:, 1:]
display(Math(latex(RD)))
display(Math(latex(RU)))
display(Math(latex(TD)))
display(Math(latex(TU)))
$\displaystyle \left[\begin{matrix}\frac{- \rho_{1} a_{2} + \rho_{2} a_{1}}{\rho_{1} a_{2} + \rho_{2} a_{1}}\end{matrix}\right]$
$\displaystyle \left[\begin{matrix}\frac{\rho_{1} a_{2} - \rho_{2} a_{1}}{\rho_{1} a_{2} + \rho_{2} a_{1}}\end{matrix}\right]$
$\displaystyle \left[\begin{matrix}\frac{2 \rho_{1} a_{1}}{\rho_{1} a_{2} + \rho_{2} a_{1}}\end{matrix}\right]$
$\displaystyle \left[\begin{matrix}\frac{2 \rho_{2} a_{2}}{\rho_{1} a_{2} + \rho_{2} a_{1}}\end{matrix}\right]$
液体-固体界面
[4]:
# left
Pl = sp.Matrix([
[(-1)*a1, -a2, k, ],
[(-1)*-rho1*w**2 , 2*mu2*Omg2, -2*k*mu2*b2, ],
[0, -2*k*mu2*a2, 2*mu2*Omg2, ]
])
# right
Pr = sp.Matrix([
[(-1)*a2, (-1)*k, -a1 ],
[(-1)*2*mu2*Omg2, (-1)*2*k*mu2*b2, -rho1*w**2 ],
[(-1)*2*k*mu2*a2, (-1)*2*mu2*Omg2, 0 ]
])
Q = sp.together(sp.expand(Pl.inv() * Pr))
TU = Q[:1, :2]
RU = Q[1:, :2]
RD = Q[:1, 2:]
TD = Q[1:, 2:]
display(Math(latex(RD)))
display(Math(latex(RU)))
display(Math(latex(TD)))
display(Math(latex(TU)))
$\displaystyle \left[\begin{matrix}\frac{2 \Omega_{2}^{2} a_{1} \mu_{2} + \Omega_{2} \omega^{2} \rho_{1} a_{2} - \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}}{2 \Omega_{2}^{2} a_{1} \mu_{2} - \Omega_{2} \omega^{2} \rho_{1} a_{2} + \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}}\end{matrix}\right]$
$\displaystyle \left[\begin{matrix}\frac{- 2 \Omega_{2}^{2} a_{1} \mu_{2} - \Omega_{2} \omega^{2} \rho_{1} a_{2} + \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}}{2 \Omega_{2}^{2} a_{1} \mu_{2} - \Omega_{2} \omega^{2} \rho_{1} a_{2} + \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}} & - \frac{4 \Omega_{2} a_{1} b_{2} k \mu_{2}}{2 \Omega_{2}^{2} a_{1} \mu_{2} - \Omega_{2} \omega^{2} \rho_{1} a_{2} + \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}}\\- \frac{4 \Omega_{2} a_{1} a_{2} k \mu_{2}}{2 \Omega_{2}^{2} a_{1} \mu_{2} - \Omega_{2} \omega^{2} \rho_{1} a_{2} + \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}} & \frac{- 2 \Omega_{2}^{2} a_{1} \mu_{2} + \Omega_{2} \omega^{2} \rho_{1} a_{2} - \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}}{2 \Omega_{2}^{2} a_{1} \mu_{2} - \Omega_{2} \omega^{2} \rho_{1} a_{2} + \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}}\end{matrix}\right]$
$\displaystyle \left[\begin{matrix}- \frac{2 \Omega_{2} \omega^{2} \rho_{1} a_{1}}{2 \Omega_{2}^{2} a_{1} \mu_{2} - \Omega_{2} \omega^{2} \rho_{1} a_{2} + \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}}\\- \frac{2 \omega^{2} \rho_{1} a_{1} a_{2} k}{2 \Omega_{2}^{2} a_{1} \mu_{2} - \Omega_{2} \omega^{2} \rho_{1} a_{2} + \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}}\end{matrix}\right]$
$\displaystyle \left[\begin{matrix}\frac{4 \Omega_{2} a_{2} \mu_{2} \left(\Omega_{2} - k^{2}\right)}{2 \Omega_{2}^{2} a_{1} \mu_{2} - \Omega_{2} \omega^{2} \rho_{1} a_{2} + \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}} & \frac{4 a_{2} b_{2} k \mu_{2} \left(\Omega_{2} - k^{2}\right)}{2 \Omega_{2}^{2} a_{1} \mu_{2} - \Omega_{2} \omega^{2} \rho_{1} a_{2} + \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}}\end{matrix}\right]$
固体-液体界面
[5]:
# left
Pl = sp.Matrix([
[a1, a2, k, ],
[rho1*w**2 , 2*mu2*Omg2, 2*k*mu2*b2, ],
[0, 2*k*mu2*a2, 2*mu2*Omg2, ]
])
# right
Pr = sp.Matrix([
[(-1)*-a2, (-1)*k, a1],
[(-1)*2*mu2*Omg2, (-1)*-2*k*mu2*b2, -rho1*w**2 ],
[(-1)*-2*k*mu2*a2, (-1)*2*mu2*Omg2, 0]
])
Q = sp.together(sp.expand(Pl.inv() * Pr))
# 注意索引和之前不同
TD = Q[:1, :2]
RD = Q[1:, :2]
RU = Q[:1, 2:]
TU = Q[1:, 2:]
# 最终表达式和液体-固体界面的情况很类似,
# 仅替换 TD <-> TU, RD <-> RU ,以及部分非对角线上的符号
# 这在编程上提供了便利
display(Math(latex(RD)))
display(Math(latex(RU)))
display(Math(latex(TD)))
display(Math(latex(TU)))
$\displaystyle \left[\begin{matrix}\frac{- 2 \Omega_{2}^{2} a_{1} \mu_{2} - \Omega_{2} \omega^{2} \rho_{1} a_{2} + \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}}{2 \Omega_{2}^{2} a_{1} \mu_{2} - \Omega_{2} \omega^{2} \rho_{1} a_{2} + \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}} & \frac{4 \Omega_{2} a_{1} b_{2} k \mu_{2}}{2 \Omega_{2}^{2} a_{1} \mu_{2} - \Omega_{2} \omega^{2} \rho_{1} a_{2} + \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}}\\\frac{4 \Omega_{2} a_{1} a_{2} k \mu_{2}}{2 \Omega_{2}^{2} a_{1} \mu_{2} - \Omega_{2} \omega^{2} \rho_{1} a_{2} + \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}} & \frac{- 2 \Omega_{2}^{2} a_{1} \mu_{2} + \Omega_{2} \omega^{2} \rho_{1} a_{2} - \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}}{2 \Omega_{2}^{2} a_{1} \mu_{2} - \Omega_{2} \omega^{2} \rho_{1} a_{2} + \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}}\end{matrix}\right]$
$\displaystyle \left[\begin{matrix}\frac{2 \Omega_{2}^{2} a_{1} \mu_{2} + \Omega_{2} \omega^{2} \rho_{1} a_{2} - \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}}{2 \Omega_{2}^{2} a_{1} \mu_{2} - \Omega_{2} \omega^{2} \rho_{1} a_{2} + \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}}\end{matrix}\right]$
$\displaystyle \left[\begin{matrix}\frac{4 \Omega_{2} a_{2} \mu_{2} \left(\Omega_{2} - k^{2}\right)}{2 \Omega_{2}^{2} a_{1} \mu_{2} - \Omega_{2} \omega^{2} \rho_{1} a_{2} + \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}} & \frac{4 a_{2} b_{2} k \mu_{2} \left(- \Omega_{2} + k^{2}\right)}{2 \Omega_{2}^{2} a_{1} \mu_{2} - \Omega_{2} \omega^{2} \rho_{1} a_{2} + \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}}\end{matrix}\right]$
$\displaystyle \left[\begin{matrix}- \frac{2 \Omega_{2} \omega^{2} \rho_{1} a_{1}}{2 \Omega_{2}^{2} a_{1} \mu_{2} - \Omega_{2} \omega^{2} \rho_{1} a_{2} + \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}}\\\frac{2 \omega^{2} \rho_{1} a_{1} a_{2} k}{2 \Omega_{2}^{2} a_{1} \mu_{2} - \Omega_{2} \omega^{2} \rho_{1} a_{2} + \omega^{2} \rho_{1} a_{2} k^{2} - 2 a_{1} a_{2} b_{2} k^{2} \mu_{2}}\end{matrix}\right]$